skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liao, Jiachun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The minimum mean-square error (MMSE) achievable by optimal estimation of a random variable S given another random variable T is of much interest in a variety of statistical contexts. Motivated by a growing interest in auditing machine learning models for unintended information leakage, we propose a neural network-based estimator of this MMSE. We derive a lower bound for the MMSE based on the proposed estimator and the Barron constant associated with the conditional expectation of S given T . Since the latter is typically unknown in practice, we derive a general bound for the Barron constant that produces order optimal estimates for canonical distribution models. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Maximal α-leakage is a tunable measure of information leakage based on the quality of an adversary's belief about an arbitrary function of private data based on public data. The parameter α determines the loss function used to measure the quality of a belief, ranging from log-loss at α = 1 to the probability of error at α = ∞. We review its definition and main properties, including extensions to α <; 1, robustness to side information, and relationship to Rényi differential privacy. 
    more » « less
  4. null (Ed.)